Pathological neovascularization is reduced by inactivation of ADAM17 in endothelial cells but not in pericytes.

نویسندگان

  • Gisela Weskamp
  • Karen Mendelson
  • Steve Swendeman
  • Sylvain Le Gall
  • Yan Ma
  • Stephen Lyman
  • Akinari Hinoki
  • Satoru Eguchi
  • Victor Guaiquil
  • Keisuke Horiuchi
  • Carl P Blobel
چکیده

RATIONALE Pathological neovascularization is a critical component of diseases such as proliferative retinopathies, cancer and rheumatoid arthritis, yet much remains to be learned about the underlying causes. Previous studies showed that vascular endothelial growth factor (VEGF)-A activates the membrane-anchored metalloproteinase ADAM17 (a disintegrin and metalloproteinase 17) in endothelial cells, thereby stimulating crosstalk between VEGF receptor 2 and extracellular signal-regulated kinase. These findings raised interesting questions about the role of ADAM17 in angiogenesis and neovascularization in vivo. OBJECTIVE The objective of this study was to inactivate ADAM17 in endothelial cells or in pericytes to determine how this affects developmental angiogenesis, pathological retinal neovascularization and heterotopic tumor growth. METHODS AND RESULTS We generated animals in which floxed ADAM17 was removed by Tie2-Cre in endothelial cells, or by smooth muscle (sm) Cre in smooth muscle cells and pericytes. There were no evident developmental defects in either conditional knockout strain, but pathological retinal neovascularization and growth of heterotopically injected tumor cells was reduced in Adam17flox/flox/Tie2-Cre mice, although not in Adam17flox/flox/sm-Cre mice. Moreover, lack of ADAM17 in endothelial cells decreased ex vivo chord formation, and this could be largely restored by addition of the ADAM17 substrate HB-EGF (heparin-binding epidermal growth factor-like growth factor). Finally we found that ADAM17 is important for the VEGF receptor 2 stimulated processing of several receptors with known functions in endothelial cell biology. CONCLUSIONS These results provide the first evidence for a role for ADAM17 in pathological neovascularization in vivo. Because ADAM17 does not appear to be required for normal developmental angiogenesis or vascular homeostasis, it could emerge as a good target for treatment of pathological neovascularization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VEGF-A stimulates ADAM17-dependent shedding of VEGFR2 and crosstalk between VEGFR2 and ERK signaling.

Vascular endothelial growth factor (VEGF)-A and the VEGF receptors are critical for regulating angiogenesis during development and homeostasis and in pathological conditions, such as cancer and proliferative retinopathies. Most effects of VEGF-A are mediated by the VEGFR2 and its coreceptor, neuropilin (NRP)-1. Here, we show that VEGFR2 is shed from cells by the metalloprotease disintegrin ADAM...

متن کامل

Locally existing endothelial cells and pericytes in ovarian stroma, but not bone marrow-derived vascular progenitor cells, play a central role in neovascularization during follicular development in mice

BACKGROUND Neovascularization is necessary for follicular growth. Vascularization is first observed in preantral follicles, and thereafter the vasculature markedly increases in follicles undergoing development. Neovascularization includes angiogenesis and vasculogenesis. Vasculogenesis is the formation of new blood vessels by bone marrow-derived endothelial progenitor cells. It is unclear wheth...

متن کامل

Intravitreal injection of TIMP3 or the EGFR inhibitor erlotinib offers protection from oxygen-induced retinopathy in mice.

PURPOSE Pathological neovascularization is a crucial component of proliferative retinopathies. Previous studies showed that inactivation of A disintegrin and metalloproteinase 17 (ADAM17), a membrane-anchored metalloproteinase that regulates epidermal growth factor receptor (EGFR) signaling, reduces pathological retinal neovascularization in a mouse model of oxygen-induced retinopathy (OIR). He...

متن کامل

Bim expression in endothelial cells and pericytes is essential for regression of the fetal ocular vasculature

Apoptosis plays a central role in developmental and pathological angiogenesis and vessel regression. Bim is a pro-apoptotic Bcl-2 family member that plays a prominent role in both developmental and pathological ocular vessel regression, and neovascularization. Endothelial cells (EC) and pericytes (PC) each play unique roles during vascular development, maintenance and regression. We recently sh...

متن کامل

Relationship between Pericytes and Endothelial Cells in Retinal Neovascularization: A Histological and Immunofluorescent Study of Retinal Angiogenesis

PURPOSE To evaluate the relationship between pericytes and endothelial cells in retinal neovascularization through histological and immunofluorescent studies. METHODS C57BL/6J mice were exposed to hyperoxia from postnatal day (P) 7 to P12 and were returned to room air at P12 to induce a model of oxygen-induced retinopathy (OIR). The cross sections of enucleated eyes were processed with hemato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 106 5  شماره 

صفحات  -

تاریخ انتشار 2010